Following we have given detailed syllabus for IAS 2014 Civil Engineering.
(i) Engineering Mechanics:-
(ii) Strength of Materials:-
(iii) Structural Analysis:-
(i) Structural Steel Design:-
Structural Steel: Factors of safety and load factors. Riveted, bolted and welded joints and connections. Design of tension and compression member, beams of built up section, riveted and welded plate girders, gantry girders, stancheons with battens and lacings.
(ii) Design of Concrete and Masonry Structures:
Concept of mix design. Reinforced Concrete: Working Stress and Limit State method of design– Recommendations of I.S. codes Design of one way and two way slabs, stair-case slabs, simple and continuous beams of rectangular, T and L sections. Compression members under direct load with or without eccentricity, Cantilever and Counter fort type retaining walls. Water tanks: Design requirements for Rectangular and circular tanks resting on ground. Prestressed concrete: Methods and systems of prestressing, anchorages, Analysis and design of sections for flexure based on working stress, loss of prestress. Design of brick masonry as per I.S. Codes
3. Fluid Mechanics, Open Channel Flow and Hydraulic Machines:
(i) Fluid Mechanics:-
Fluid properties and their role in fluid motion, fluid statics including forces acting on plane and curved surfaces. Kinematics and Dynamics of Fluid flow: Velocity and accelerations, stream lines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions. Continuity, momentum and energy equation, Navier-Stokes equation, Euler’s equation of motion, application to fluid flow problems, pipe flow, sluice gates, weirs.
(ii) Dimensional Analysis and Similitude:
Buckingham’s Pi-theorem, dimensionless parameters.
(iii) Laminar Flow:-
Laminar flow between parallel, stationary and moving plates, flow through tube.
(iv) Boundary layer:
Laminar and turbulent boundary layer on a flat plate, laminar sub layer, smooth and rough boundaries, drag and lift. Turbulent flow through pipes: Characteristics of turbulent flow, velocity distribution and variation of pipe friction factor, hydraulic grade line and total energy line.
(v) Open channel flow:-
Uniform and non-uniform flows, momentum and energy correction factors, specific energy and specific force, critical depth, rapidly varied flow, hydraulic jump, gradually varied flow, classification of surface profiles, control section, step method of integration of varied flow equation.
(vi) Hydraulic Machines and Hydropower:
Hydraulic turbines, types classification, Choice of turbines, performance parameters, controls, characteristics, specific speed. Principles of hydropower development.
4. Geotechnical Engineering:-
IAS 2014 Civil Engineering Paper I Syllabus
1. Engineering Mechanics, Strength of Materials and Structural Analysis:(i) Engineering Mechanics:-
- Units and Dimensions
- SI Units
- Vectors
- Concept of Force
- Concept of Particle and Rigid Body
- Concurrent, Non Concurrent and Parallel Forces In A Plane
- Moment of Force
- Free Body Diagram
- Conditions of Equilibrium
- Principle of Virtual Work
- Equivalent Force System
- First and Second Moment of Area
- Mass Moment Of Inertia
- Static Friction
- Kinematics and Kinetics
(ii) Strength of Materials:-
- Simple Stress And Strain
- Elastic Constants
- Axially Loaded Compression Members
- Shear Force and Bending Moment
- Theory of Simple Bending
- Shear Stress Distribution across Cross Sections
- Beams of Uniform Strength
- Deflection of Beams
- Macaulay’s Method
- Mohr’s Moment Area Method
- Conjugate Beam Method
- Unit Load Method
- Torsion of Shafts
- Elastic Stability of Columns
- Euler’s Rankine’s
- Secant Formulae
(iii) Structural Analysis:-
- Castiglianio’s theorems I and II
- Unit load method of consistent deformation applied to beams and pin jointed trusses
- Slope deflection
- Moment distribution
- Rolling loads
- Influences lines
- Arches
- Matrix methods of analysis
- Plastic Analysis of beams and frames
- Unsymmetrical bending
(i) Structural Steel Design:-
Structural Steel: Factors of safety and load factors. Riveted, bolted and welded joints and connections. Design of tension and compression member, beams of built up section, riveted and welded plate girders, gantry girders, stancheons with battens and lacings.
(ii) Design of Concrete and Masonry Structures:
Concept of mix design. Reinforced Concrete: Working Stress and Limit State method of design– Recommendations of I.S. codes Design of one way and two way slabs, stair-case slabs, simple and continuous beams of rectangular, T and L sections. Compression members under direct load with or without eccentricity, Cantilever and Counter fort type retaining walls. Water tanks: Design requirements for Rectangular and circular tanks resting on ground. Prestressed concrete: Methods and systems of prestressing, anchorages, Analysis and design of sections for flexure based on working stress, loss of prestress. Design of brick masonry as per I.S. Codes
3. Fluid Mechanics, Open Channel Flow and Hydraulic Machines:
(i) Fluid Mechanics:-
Fluid properties and their role in fluid motion, fluid statics including forces acting on plane and curved surfaces. Kinematics and Dynamics of Fluid flow: Velocity and accelerations, stream lines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions. Continuity, momentum and energy equation, Navier-Stokes equation, Euler’s equation of motion, application to fluid flow problems, pipe flow, sluice gates, weirs.
(ii) Dimensional Analysis and Similitude:
Buckingham’s Pi-theorem, dimensionless parameters.
(iii) Laminar Flow:-
Laminar flow between parallel, stationary and moving plates, flow through tube.
(iv) Boundary layer:
Laminar and turbulent boundary layer on a flat plate, laminar sub layer, smooth and rough boundaries, drag and lift. Turbulent flow through pipes: Characteristics of turbulent flow, velocity distribution and variation of pipe friction factor, hydraulic grade line and total energy line.
(v) Open channel flow:-
Uniform and non-uniform flows, momentum and energy correction factors, specific energy and specific force, critical depth, rapidly varied flow, hydraulic jump, gradually varied flow, classification of surface profiles, control section, step method of integration of varied flow equation.
(vi) Hydraulic Machines and Hydropower:
Hydraulic turbines, types classification, Choice of turbines, performance parameters, controls, characteristics, specific speed. Principles of hydropower development.
4. Geotechnical Engineering:-
- Soil Type and structure - gradation and particle size distribution - consistency limits.
- Water in soil - capillary and structural - effective stress and pore water pressure - permeability concept - field and laboratory determination of permeability - Seepage pressure - quick sand conditions - Shear strength determination - Mohr Coulomb concept.
- Compaction of soil - Laboratory and field tests. Compressibility and consolidation concept - consolidation theory - consolidation settlement analysis. Earth pressure theory and analysis for retaining walls - Application for sheet piles and Braced excavation.
- Bearing capacity of soil - approaches for analysis - Field tests - settlement analysis - stability of slope of earth walk.
- Subsurface exploration of soils - methods Foundation - Type and selection criteria for foundation of structures– Design criteria for foundation - Analysis of distribution of stress for footings and pile - pile group action-pile load test.
- Ground improvement techniques.